
CS 4530 Software Engineering

Module 14: Principles and Patterns of Cloud Infrastructure

Khoury College of Computer Sciences
© 2025 released under CC BY-SA

Adeel Bhutta and Mitch Wand
Khoury College of Computer Sciences

http://creativecommons.org/licenses/by-sa/4.0/

Learning objectives for this lesson
• By the end of this lesson, you should be able to…

• Explain what “cloud” computing is and why it is
important

• Explain why shared infrastructure is important in
cloud computing

• Describe the difference between virtual machines
and containers

• Discuss trade-offs that you might consider for self
or vendor-managed platforms

How to deploy web apps?
• What we need:

• A server that can run our application
• A network that is configured to route requests from

an address to that server
• Questions to think about:

• What software do we need to run besides our
application code? (Databases, caches, etc?)

• Where does this server come from? (Buy/Borrow?)

• Who else gets to use this server? (Multi-tenancy or
exclusive?)

• Who maintains the server and software? (Updates OS,
libraries, etc?)

Many apps rely on common infrastructure
• Content delivery network: caches

static content “at the edge” (e.g.
cloudflare, Akamai)

• Web servers: Speak HTTP, serve static
content (eg REACT), load balance
between app servers (e.g. haproxy,
traefik)

• App servers: Run our backend
application (e.g. nodejs)

• Misc services: Logging, monitoring,
firewall

• Database servers: Persistent data

Content
Delivery
Network

Web
Servers

App
Servers

Database
servers

Misc
Services

Clients

Render.com terminology
• Content delivery network: caches

static content “at the edge” (e.g.
cloudflare, Akamai)

• Web servers: Speak HTTP, serve static
content (eg REACT), load balance
between app servers (e.g. haproxy,
traefik)

• App servers: Run our backend
application (e.g. nodejs)

• Misc services: Logging, monitoring,
firewall

• Database servers: Persistent data

Content
Delivery
Network

Web
Servers

App
Servers

Database
servers

Misc
Services

Clients

"Static Site"

"Web Service"

What parts of this infrastructure can be shared
across different clients?

Content
Delivery
Network

Web
Servers

App
Servers

Database
servers

Misc
Services

Client 1 App 1

Client 3 App 3

Client 2 App 2

Shared infrastructure analogy: Pizza
• Four ways to get pizza: Make

yourself, take and bake, delivery,
dine out

• Vendor manages different levels
of the stack, achieving
economies of scale

• When would you choose one
over the other?

Pizza as a Service — by Albert Barron (unlicensed?)

Shared infrastructure creates economies of
scale
• At the physical level:

• Multiple customers’ physical machines in the same data center
• Save on physical costs (centralize power, cooling, security,

maintenance)

• At the physical server level:

• Multiple customers’ virtual machines in the same physical machine
• Save on resource costs (utilize marginal computing capacity – CPUs,

RAM, disk)

• At the application level:

• Multiple customer’s applications hosted in same virtual machine
• Save on resource overhead (eliminate redundant infrastructure like

OS)

• “Cloud” is the natural expansion of multi-tenancy at all levels

What is the infrastructure that can be
shared?
• Our apps run on a “tall stack” of

dependencies
• Old style: this full stack is self-managed
• Cloud providers offer products that

manage parts of that stack for us:
• “Infrastructure as a service”
• “Platform as a service”
• “Software as a Service”
• Collectively called “X as a Service”

Cloud services gives on-demand access to
infrastructure, “as a service”
• Vendor provides a service catalog of “X as a service” abstractions

that provide infrastructure as a service
• API allows us to provision resources on-demand
• Transfers responsibility for managing the underlying infrastructure to

a vendor

Cloud infrastructure scales elastically
• “Traditional” computing infrastructure requires capital

investment
• “Scaling up” means buying more hardware, or

maintaining excess capacity for when scale is needed
• “Scaling down” means selling hardware, or powering

it off
• Cloud computing scales elastically:

• “Scaling up” means allocating more shared resources
• “Scaling down” means releasing resources into a pool
• Billed on consumption (usually per-second, per-

minute or per-hour)

Infrastructure as a Service: Virtual Machines

• Virtualize a single large server into many
smaller machines

• Each VM runs its own OS
• OS limits resource usage and guarantees

per-VM quality
• Administration responsibilities separated

for physical machine vs virtual machines
• Examples:
• Cloud: Amazon EC2, Google Compute

Engine, Azure
• On-Premises: VMWare, Proxmox

The operating system allows several apps to
share the underlying hardware

Hardware
ISA

Operating System
ISA+OS Calls

App1

App1
Dependencies

App2

App2
Dependencies

• The “instruction set” is an
abstraction of the
underlying hardware

• The operating system
presents the same
abstraction + OS calls.

Virtual Machine 1

A virtual machine layer allows several different
operating systems to share the same hardware

Hardware

ISA

OS1

App1

App1
Depe
nden
cies

App2

App2
Depe
nden
cies

Virtual Machine Manager

ISA

Virtual Machine 2

ISA
OS2

App1

App1
Depe
nden
cies

App2

App2
Depe
nden
cies

Virtual Machines facilitate multi-tenancy
• Multi-Tenancy

• Multiple customers sharing same physical machine,
oblivious to each other

• Decouples application from hardware
• virtualization service can provide “live migration”

transparent to the operating system, maximizing
utilization

• Faster to provision and release
• VM v. physical machines == ~mins v. ~hours (days?)

Virtual Machines to Containers
• Each VM contains a full operating system
• What if each application could run in the same

(overall) operating system? Why have multiple
copies?

• Advantages to smaller apps:
• Faster to copy (and hence provision)
• Consume less storage (base OS images are usually

3-10GB)

Containers run layered images, reducing
storage space
• Images are defined programmatically as a

series of “build steps” (e.g. Dockerfile)
• Each step in the build becomes a “layer”
• Built layers can be shared and cached
• To run a container, the layers are linked

together with an “overlay” filesystem

FROM node:18-buster-slim
RUN apt-get update && apt-get install python3
build-essential libpango1.0-dev libcairo2-dev
libjpeg-dev libgif-dev -y

RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app
COPY ./ /usr/src/app

RUN npm ci
RUN npm run build
CMD ["npm", "start"]

Example image specification (Dockerfile)

node:18-buster-slim

python3, buildessential,
pango, cairo, libjpeg, libgif

Our app

Our compiled app

Example image, with layers shown

Containers run layered images, reducing
storage space
• Many images may share the same lower layers (e.g. OS, NodeJS, some

system dependencies)
• Layers are shared between images
• Multi-tenancy: N running containers only require one copy of each

layer (they are read-only)

node:18-buster-slim

python3, buildessential,
pango, cairo, libjpeg, libgif

Orion’s app

Orion’s compiled app

Two images, sharing two layers

node:18-buster-slim

python3, buildessential,
pango, cairo, libjpeg, libgif

Ripley’s app

Ripley’s compiled app

A container contains your apps and all their
dependencies
• Each application is encapsulated in a “lightweight

container,” includes:
• System libraries (e.g. glibc)
• External dependencies (e.g. nodejs)

• “Lightweight” in that container images are smaller
than VM images - multi tenant containers run in the
OS

• Cloud providers offer “containers as a service”
(Amazon ECS Fargate, Azure Kubernetes,
Google Kubernetes)

• Vendor supplies an on-
demand instance of an
operating system
• e.g.: Linux version NN

• Vendor is free to
implement that instance
in a way that optimizes
costs across many
clients.

XaaS: Containers as a Service

Hardware
ISA

Operating System
ISA+OS Calls

Container 2

App1

App1
Depend
encies

App2

App2
Depend
encies

Container 1

App1

App1
Depend
encies

App2

App2
Depend
encies

We don’t care what’s under here: it’s an
abstraction!

• Docker provides a
standardized interface
for your container to use

• Many vendors will host
your Docker container

• An open standard for
containers also exists
(“OCI”)

Docker is the prevailing container platform

Hardware
ISA

Operating System
Docker

Container 2

App1

App1
Depend
encies

App2

App2
Depend
encies

Container 1

App1

App1
Depend
encies

App2

App2
Depend
encies

We don’t care what’s under here: it’s an
abstraction!

Tradeoffs between VMs and Containers
• Performance is comparable
• Each VM has a copy of the OS and libraries

• Higher resource overhead
• Slower to provision
• Support for wider variety of OS’s

• Containers are “lightweight”
• Lower resource overhead
• Faster to provision
• Potential for compatibility issues, especially with older

software

Platform-as-a-Service: vendor supplies OS +
middleware
• Middleware is the stuff between our app and a

user’s requests:
• Content delivery networks: Cache static content
• Web Servers: route client requests to one of our

app containers
• Application server: run our handler functions in

response to requests from load balancer
• Monitoring/telemetry: log requests, response

times and errors
• Cloud vendors provide managed middleware

platforms too: “Platform as a Service”

Content
Delivery
Network

Web
Servers

App
Servers

Database
servers

Monitoring/T
elemetry

Clients

PaaS is often the simplest choice for app
deployment
• Platform-as-a-Service provides components most apps need,

fully managed by the vendor: load balancer, monitoring,
application server

• Some PaaS run your app in a container: Heroku, AWS Elastic
Beanstalk, Google App Engine, Railway, Vercel…

• Other PaaS run your apps as individual functions/event
handlers: AWS Lambda, Google Cloud Functions, Azure Functions

• Other PaaSs provide databases and authentication, and run
your functions/event handlers: Google Firebase, Back4App

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

PaaS

Self-managed vs Vendor-managed
Infrastructure Tradeoffs
• Consider who manages each tier in the stack
• Benefits to vendor-managed options:

• More ways to reduce resource consumption,
improve resource utilization

• Less management burden
• Less capital investment, more flexibility in scaling

• Benefits to self-managed options:
• Greater flexibility to migrate between software

platforms
• More capital investment, potentially less

operating expenses

Self-managed Vendor-managed

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

SaaS

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Traditional, on-
premises computing

Virtualization

Cloud Infrastructure is best for variable
workloads
• Consider:

• Does your workload benefit from ability to scale up or down?
• Variable workloads have different demands over time (most common)
• Constant workloads require sustained resources (less common)

• Example:
• Need to run 300 VMs, each 4 vCPUs, 16GB RAM

• Private cloud:
• Dell PowerEdge Pricing (AMD EPYC 64 core CPUs)
• 7 servers, each 128 cores, 512GB RAM, 3 TB storage = $162,104

• Public cloud:
• Amazon EC2 Pricing (M7a.xlarge instances, $0.153/VM-hour)
• 10 VMs for 1 year + 290 VMs for 1 month: $45,792.90
• 300 VMs for 1 year: $402,084.00

Public clouds are not the only option
• “Public” clouds are connected to the internet and available

for anyone to use
• Examples: Amazon, Azure, Google Cloud, DigitalOcean

• “Private” clouds use cloud technologies with on-premises,
self-managed hardware
• Cost-effective when a large scale of baseline resources are

needed
• Example management software: OpenStack, VMWare,

Proxmox, Kubernetes
• “Hybrid” clouds integrate private and public (or multiple

public) clouds
• Effective approach to “burst” capacity from private cloud

to public cloud

Software as a Service adds more vendor-
managed apps
• Providers may also develop custom software

offered only as a service
• Examples:

• PostgreSQL (open source)
• Twilio Programmable Video (proprietary chat)

Self-managed Vendor-managed

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

IaaS

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

SaaS

“X as a Service" offers several abstractions
to choose from depending on your needs

Vendor-managed

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

IaaS

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

SaaS

• Vendor manages
different levels of
the stack, achieving
economies of scale

• When would you
choose one over
the other?

• Explore some
options at
https://compareclo
ud.in/

Self-managed

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Traditional, on-
premises computing

Virtualization

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

PaaS

https://comparecloud.in/
https://comparecloud.in/

Review
• You should now be able to…

• Explain what “cloud” computing is and why it is
important

• Explain why shared infrastructure is important in
cloud computing

• Describe the difference between virtual machines
and containers

• Discuss trade-offs that you might consider for self
or vendor-managed platforms

	CS 4530 Software Engineering

Module 14: Principles and Patterns of Cloud Infrastructure
	Learning objectives for this lesson
	How to deploy web apps?
	Many apps rely on common infrastructure
	Render.com terminology
	What parts of this infrastructure can be shared across different clients?
	Shared infrastructure analogy: Pizza
	Shared infrastructure creates economies of scale
	What is the infrastructure that can be shared?
	Cloud services gives on-demand access to infrastructure, “as a service”
	Cloud infrastructure scales elastically
	Infrastructure as a Service: Virtual Machines
	The operating system allows several apps to share the underlying hardware
	A virtual machine layer allows several different operating systems to share the same hardware
	Virtual Machines facilitate multi-tenancy
	Virtual Machines to Containers
	Containers run layered images, reducing storage space
	Containers run layered images, reducing storage space
	A container contains your apps and all their dependencies
	XaaS: Containers as a Service
	Docker is the prevailing container platform
	Tradeoffs between VMs and Containers
	Platform-as-a-Service: vendor supplies OS + middleware
	PaaS is often the simplest choice for app deployment
	Self-managed vs Vendor-managed Infrastructure Tradeoffs
	Cloud Infrastructure is best for variable workloads
	Public clouds are not the only option
	Software as a Service adds more vendor-managed apps
	“X as a Service" offers several abstractions to choose from depending on your needs
	Review

