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Learning objectives for this lesson
• By the end of this lesson, you should be able to…

• Explain what “cloud” computing is and why it is 
important

• Explain why shared infrastructure is important in 
cloud computing

• Describe the difference between virtual machines 
and containers

• Discuss trade-offs that you might consider for self 
or vendor-managed platforms



How to deploy web apps?
• What we need:

• A server that can run our application
• A network that is configured to route requests from 

an address to that server
• Questions to think about:

• What software do we need to run besides our 
application code? (Databases, caches, etc?)

• Where does this server come from? (Buy/Borrow?)

• Who else gets to use this server? (Multi-tenancy or 
exclusive?)

• Who maintains the server and software? (Updates OS, 
libraries, etc?)



Many apps rely on common infrastructure
• Content delivery network: caches 

static content “at the edge” (e.g. 
cloudflare, Akamai)

• Web servers: Speak HTTP, serve static 
content (eg REACT), load balance 
between app servers (e.g. haproxy, 
traefik)

• App servers: Run our backend 
application (e.g. nodejs)

• Misc services: Logging, monitoring, 
firewall

• Database servers: Persistent data
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Render.com terminology
• Content delivery network: caches 

static content “at the edge” (e.g. 
cloudflare, Akamai)

• Web servers: Speak HTTP, serve static 
content (eg REACT), load balance 
between app servers (e.g. haproxy, 
traefik)

• App servers: Run our backend 
application (e.g. nodejs)

• Misc services: Logging, monitoring, 
firewall

• Database servers: Persistent data
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What parts of this infrastructure can be shared 
across different clients?
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Shared infrastructure analogy: Pizza
• Four ways to get pizza: Make 

yourself, take and bake, delivery, 
dine out

• Vendor manages different levels 
of the stack, achieving 
economies of scale

• When would you choose one 
over the other?

Pizza as a Service — by Albert Barron (unlicensed?)



Shared infrastructure creates economies of 
scale
• At the physical level:

• Multiple customers’ physical machines in the same data center
• Save on physical costs (centralize power, cooling, security, 

maintenance)

• At the physical server level:

• Multiple customers’ virtual machines in the same physical machine
• Save on resource costs (utilize marginal computing capacity – CPUs, 

RAM, disk)

• At the application level:

• Multiple customer’s applications hosted in same virtual machine
• Save on resource overhead (eliminate redundant infrastructure like 

OS)

• “Cloud” is the natural expansion of multi-tenancy at all levels



What is the infrastructure that can be 
shared?
• Our apps run on a “tall stack” of 

dependencies
• Old style: this full stack is self-managed
• Cloud providers offer products that 

manage parts of that stack for us:
• “Infrastructure as a service”
• “Platform as a service”
• “Software as a Service”
• Collectively called “X as a Service”



Cloud services gives on-demand access to 
infrastructure, “as a service”
• Vendor provides a service catalog of “X as a service” abstractions 

that provide infrastructure as a service
• API allows us to provision resources on-demand
• Transfers responsibility for managing the underlying infrastructure to 

a vendor



Cloud infrastructure scales elastically
• “Traditional” computing infrastructure requires capital 

investment
• “Scaling up” means buying more hardware, or 

maintaining excess capacity for when scale is needed
• “Scaling down” means selling hardware, or powering 

it off
• Cloud computing scales elastically:

• “Scaling up” means allocating more shared resources
• “Scaling down” means releasing resources into a pool
• Billed on consumption (usually per-second, per-

minute or per-hour)



Infrastructure as a Service: Virtual Machines

• Virtualize a single large server into many 
smaller machines

• Each VM runs its own OS
• OS limits resource usage and guarantees 

per-VM quality
• Administration responsibilities separated 

for physical machine vs virtual machines
• Examples:
• Cloud: Amazon EC2, Google Compute 

Engine, Azure
• On-Premises: VMWare, Proxmox



The operating system allows several apps to 
share the underlying hardware
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Virtual Machine 1

A virtual machine layer allows several different 
operating systems to share the same hardware
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Virtual Machines facilitate multi-tenancy
• Multi-Tenancy

• Multiple customers sharing same physical machine, 
oblivious to each other

• Decouples application from hardware
• virtualization service can provide “live migration”

transparent to the operating system, maximizing 
utilization

• Faster to provision and release
• VM v. physical machines == ~mins v. ~hours (days?)



Virtual Machines to Containers
• Each VM contains a full operating system
• What if each application could run in the same 

(overall) operating system? Why have multiple 
copies?

• Advantages to smaller apps:
• Faster to copy (and hence provision)
• Consume less storage (base OS images are usually 

3-10GB)



Containers run layered images, reducing 
storage space
• Images are defined programmatically as a 

series of “build steps” (e.g. Dockerfile)
• Each step in the build becomes a “layer”
• Built layers can be shared and cached
• To run a container, the layers are linked 

together with an “overlay” filesystem

FROM node:18-buster-slim
RUN apt-get update && apt-get install python3 
build-essential libpango1.0-dev libcairo2-dev 
libjpeg-dev libgif-dev -y

RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app
COPY ./ /usr/src/app

RUN npm ci 
RUN npm run build
CMD [ "npm", "start" ]

Example image specification (Dockerfile)

node:18-buster-slim

python3, buildessential, 
pango, cairo, libjpeg, libgif

Our app

Our compiled app

Example image, with layers shown



Containers run layered images, reducing 
storage space
• Many images may share the same lower layers (e.g. OS, NodeJS, some 

system dependencies)
• Layers are shared between images
• Multi-tenancy: N running containers only require one copy of each 

layer (they are read-only)

node:18-buster-slim

python3, buildessential, 
pango, cairo, libjpeg, libgif

Orion’s app

Orion’s compiled app

Two images, sharing two layers

node:18-buster-slim

python3, buildessential, 
pango, cairo, libjpeg, libgif

Ripley’s app

Ripley’s compiled app



A container contains your apps and all their 
dependencies
• Each application is encapsulated in a “lightweight 

container,” includes:
• System libraries (e.g. glibc)
• External dependencies (e.g. nodejs)

• “Lightweight” in that container images are smaller 
than VM images - multi tenant containers run in the 
OS

• Cloud providers offer “containers as a service” 
(Amazon ECS Fargate, Azure Kubernetes, 
Google Kubernetes)



• Vendor supplies an on-
demand instance of an 
operating system
• e.g.: Linux version NN

• Vendor is free to 
implement that instance 
in a way that optimizes 
costs across many 
clients.

XaaS: Containers as a Service
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• Docker provides a 
standardized interface 
for your container to use

• Many vendors will host 
your Docker container

• An open standard for 
containers also exists 
(“OCI”)

Docker is the prevailing container platform
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Tradeoffs between VMs and Containers
• Performance is comparable
• Each VM has a copy of the OS and libraries

• Higher resource overhead
• Slower to provision
• Support for wider variety of OS’s

• Containers are “lightweight”
• Lower resource overhead
• Faster to provision
• Potential for compatibility issues, especially with older 

software



Platform-as-a-Service: vendor supplies OS + 
middleware
• Middleware is the stuff between our app and a 

user’s requests:
• Content delivery networks: Cache static content
• Web Servers: route client requests to one of our 

app containers
• Application server: run our handler functions in 

response to requests from load balancer
• Monitoring/telemetry: log requests, response 

times and errors
• Cloud vendors provide managed middleware 

platforms too: “Platform as a Service”
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PaaS is often the simplest choice for app 
deployment
• Platform-as-a-Service provides components most apps need, 

fully managed by the vendor: load balancer, monitoring, 
application server

• Some PaaS run your app in a container: Heroku, AWS Elastic 
Beanstalk, Google App Engine, Railway, Vercel…

• Other PaaS run your apps as individual functions/event 
handlers: AWS Lambda, Google Cloud Functions, Azure Functions

• Other PaaSs provide databases and authentication, and run 
your functions/event handlers: Google Firebase, Back4App
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Self-managed vs Vendor-managed 
Infrastructure Tradeoffs
• Consider who manages each tier in the stack
• Benefits to vendor-managed options:

• More ways to reduce resource consumption, 
improve resource utilization

• Less management burden
• Less capital investment, more flexibility in scaling

• Benefits to self-managed options:
• Greater flexibility to migrate between software 

platforms
• More capital investment, potentially less 

operating expenses
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Cloud Infrastructure is best for variable 
workloads
• Consider: 

• Does your workload benefit from ability to scale up or down?
• Variable workloads have different demands over time (most common)
• Constant workloads require sustained resources (less common)

• Example: 
• Need to run 300 VMs, each 4 vCPUs, 16GB RAM

• Private cloud: 
• Dell PowerEdge Pricing (AMD EPYC 64 core CPUs)
• 7 servers, each 128 cores, 512GB RAM, 3 TB storage = $162,104

• Public cloud: 
• Amazon EC2 Pricing (M7a.xlarge instances, $0.153/VM-hour)
• 10 VMs for 1 year + 290 VMs for 1 month: $45,792.90
• 300 VMs for 1 year: $402,084.00



Public clouds are not the only option
• “Public” clouds are connected to the internet and available 

for anyone to use
• Examples: Amazon, Azure, Google Cloud, DigitalOcean

• “Private” clouds use cloud technologies with on-premises, 
self-managed hardware
• Cost-effective when a large scale of baseline resources are 

needed
• Example management software: OpenStack, VMWare, 

Proxmox, Kubernetes
• “Hybrid” clouds integrate private and public (or multiple 

public) clouds
• Effective approach to “burst” capacity from private cloud 

to public cloud



Software as a Service adds more vendor-
managed apps
• Providers may also develop custom software 

offered only as a service
• Examples:

• PostgreSQL (open source)
• Twilio Programmable Video (proprietary chat) 
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“X as a Service" offers several abstractions 
to choose from depending on your needs
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• Vendor manages 
different levels of 
the stack, achieving 
economies of scale

• When would you 
choose one over 
the other?

• Explore some 
options at 
https://compareclo
ud.in/
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Review
• You should now be able to…

• Explain what “cloud” computing is and why it is 
important

• Explain why shared infrastructure is important in 
cloud computing

• Describe the difference between virtual machines 
and containers

• Discuss trade-offs that you might consider for self 
or vendor-managed platforms
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